Q-FRPML: QoS-Centric Fault-Resilient Routing Protocol for Mobile-WSN Based Low Power Lossy Networks

Author
Keywords
Abstract

Considering the significance of mobile-Wireless Sensor Networks (WSNs) under Low Power Lossy Network (LLN) Conditions, in this paper a highly robust and QoS-Centric Fault-Resilient Routing Protocol for Mobile-WSN in LLN (Q-FRPML) has been proposed. Unlike classical routing approaches such as Routing Protocol for 6LowPAN based LLNs (RPL), our proposed Q-FRPML protocol contributes multiple novelties including received signal strength indicator (RSSI) based mobile node positioning for fault-resilient communication, proactive node management, RSSI and ETX objective functions based best parent node selection, link layer adaptive fault-resilient alternate path formation for QoS centric communication over mobile-WSNs. Q-FRPML protocol is implemented in parallel to the link layer of the classical RPL IEEE 802.15.4 protocol stack that once detecting any link-outage executes best parent node selection and alternate path formation to assure reliable data delivery. In this process, Q-FRPML avoids continuous network discovery that significantly reduces signaling overheads and energy consumption. Contiki-Cooja based simulation results have revealed that the proposed Q-FRPML protocol outperforms state-of-art native RPL or S-RPL protocol in terms of higher packet delivery ratio, lower packet loss ratio and end-to-end delay under varying network or load conditions. Though, Q-FRPML protocol has been applied in parallel to the native RPL, it preserves backward compatibility and hence can be applied in real-time mobile-WSN based QoS centric communication purposes. © 2018, Springer Science+Business Media, LLC, part of Springer Nature.

Year of Publication
2019
Journal
Wireless Personal Communications
Volume
105
Issue
1
Number of Pages
267-292,
Type of Article
Article
ISBN Number
09296212 (ISSN)
DOI
10.1007/s11277-018-6112-8
Publisher
Springer New York LLC
Journal Article
Download citation
Cits
15
CIT

For admissions and all other information, please visit the official website of

Cambridge Institute of Technology

Cambridge Group of Institutions

Contact

Web portal developed and administered by Dr. Subrahmanya S. Katte, Dean - Academics.

Contact the Site Admin.